6.4: Sum of a Series (2024)

  • Page ID
    40931
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    To find approximate solutions to problems in the sciences, it is often necessary to calculate the sum of a finite or infinite series. There are a variety of formulas that are used to accomplish this. Some of these formulas will be presented with proofs, but others will not. If you are interested in the proofs that are not included, please let me know.
    General Formulas

    Constant Series - notice that there is no \(k\) in the summation, the \(c\) is a constant that does not depend on the value of \(k\)
    \(\sum_{k=1}^{n} c=c+c+c+\cdots+c=n * c\)

    Sum of the first \(n\) integers:
    \(\sum_{k=1}^{n} k=1+2+3+\dots+n=\frac{n(n+1)}{2}\)

    Sum of the first \(n\) perfect squares:
    \(\sum_{k=1}^{n} k^{2}=1+4+9+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}\)

    Sum of the first \(n\) perfect cubes:
    \(\sum_{k=1}^{n} k^{3}=1+8+27+\cdots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}\)

    The first formula should be obvious. The other three formulas are usually proved using mathematical induction, which we won't cover in this course. If you're interested in these proofs and how mathematical induction works, please let me know.

    Formulas for the sum of arithmetic and geometric series:

    Arithmetic Series: like an arithmetic sequence, an arithmetic series has a constant difference \(d .\) If we write out the terms of the series:
    \(\sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}\)

    we can rewrite this in terms of the first term \(\left(a_{1}\right)\) and the constant difference \(d\)
    \(\sum_{k=1}^{n} a_{k}=a_{1}+\left(a_{1}+d\right)+\left(a_{1}+2 d\right)+\cdots+\left(a_{1}+(n-1) d\right)\)

    This expression is equivalent to:
    \(\sum_{k=1}^{n} a_{k}=\left(a_{1}+a_{1}+a_{1}+\cdots+a_{1}\right)+(d+2 d+3 d+\cdots(n-1) d)\)
    \(\sum_{k=1}^{n} a_{k}=n a_{1}+d(1+2+3+\cdots(n-1))\)

    Using the previous formula for the sum \(1+2+3+\dots+(n-1)\) gives us:
    \(\sum_{k=1}^{n} a_{k}=n a_{1}+d\left(\frac{(n-1) n}{2}\right)\)

    This formula is often stated in various forms:
    \(\sum_{k=1}^{n} a_{k}=\frac{n}{2}\left(2 a_{1}+(n-1) d\right)\)

    or
    \(\sum_{k=1}^{n} a_{k}=\frac{n}{2}\left(a_{1}+a_{n}\right)\)
    since \(a_{1}+(n-1) d=a_{n}\)

    Geometric Series:

    Given a geometric series, whose first term is \(a\) and with a constant ratio of \(r\) \(\sum_{k=1}^{n} a * r^{k-1},\) we can write out the terms of the series in a similar way that we did for the arithmetic series.
    \(\sum_{k=1}^{n} a * r^{k-1}=a+a r+a r^{2}+a r^{3}+\cdots+a r^{n-1}\)

    The trick to finding a formula for the sum of this type of series is to multiply both sides of the previous equation by \(r\)
    For simplicity's sake let's rename the sum of the series \(\sum_{k=1}^{n} a * r^{k-1}\) as \(S_{n}\)

    So,
    \(S_{n}=a+a r+a r^{2}+a r^{3}+\dots+a r^{n-1}\)

    and
    \(r * S_{n}=r\left(a+a r+a r^{2}+a r^{3}+\dots+a r^{n-1}\right)=a r+a r^{2}+a r^{3}+\dots+a r^{n}\)

    If we subtract these two equations, we will have:
    \(S_{n}=a+a r+a r^{2}+a r^{3}+\dots+a r^{n-1}\)
    \(-\left(r * S_{n}=a r+a r^{2}+a r^{3}+\cdots+a r^{n}\right)\)

    Then we'll have:
    \(S_{n}-r S_{n}=a-a r^{n}\)

    Factor out \(S_{n}\) on the left-hand side:
    \(S_{n}(1-r)=a-a r^{n}\)

    and divide on both sides to isolate \(S_{n}:\)
    \(\frac{S_{n}(1-r)}{(1-r)}=\frac{a-a r^{n}}{(1-r)}\)
    \(S_{n}=\frac{a-a r^{n}}{1-r}\)

    So for a finite geometric series, we can use this formula to find the sum. This formula can also be used to help find the sum of an infinite geometric series, if the series converges. Typically this will be when the value of \(r\) is between -1 and 1. In other words, \(|r|<1\) or \(-1<r<1 .\) This is important because it causes the \(a r^{n}\) term in the above formula to approach 0 as \(n\) becomes infinite. So, if \(-1<r<1,\) then the sum of an infinite geometric series wil be:
    \(S_{n}=\frac{a}{1-r}\)

    Exercises 6.4
    Find the sum for each of the following finite geometric series.
    1) \(\sum_{k=1}^{7} 3\left(\frac{1}{4}\right)^{k-1}\)

    2) \(\sum_{k=1}^{7} 16\left(\frac{1}{3}\right)^{k-1}\)

    3) \(\sum_{k=1}^{7} 3^{k}\)

    4) \(\sum_{k=1}^{10} 2^{k-1}\)

    5) \(\sum_{k=1}^{5} 4^{k-1}\)

    6) \(\sum_{k=1}^{4} 6^{k-1}\)

    7) \(\sum_{k=1}^{7} 2^{k}\)

    8) \(\sum_{k=1}^{8} 3^{k}\)

    9) \(\sum_{k=1}^{5} 2^{k+2}\)

    10) \(\sum_{1}^{6} 3^{k-4}\)

    Determine whether each of the following geometric series has a sum. If it does, use the formula \(S_{n}=\frac{a}{1-r}\) to find the sum.
    11) \(\sum_{k=1}^{\infty} 5 *\left(\frac{2}{3}\right)^{k-1}\)

    12) \(\sum_{k=1}^{\infty} 12 *\left(\frac{1}{2}\right)^{k-1}\)

    13) \(\sum_{k=1}^{\infty}\left(\frac{3}{4}\right)^{k-1}\)

    14) \(\sum_{k=1}^{\infty}\left(\frac{3}{5}\right)^{k-1}\)

    15) \(\sum_{k=1}^{\infty}\left(\frac{1}{5}\right)^{k+1}\)

    16) \(\sum_{k=1}^{\infty}\left(\frac{1}{4}\right)^{k+1}\)

    17) \(\sum_{k=1}^{\infty}\left(\frac{4}{3}\right)^{k-1}\)

    18) \(\sum_{k=1}^{\infty}\left(\frac{3}{2}\right)^{k-1}\)

    19) \(\sum_{k=1}^{\infty}\left(-\frac{1}{3}\right)^{k+2}\)

    20) \(\sum_{k=1}^{\infty}\left(-\frac{1}{2}\right)^{k+4}\)

    6.4: Sum of a Series (2024)
    Top Articles
    Araña (Anya Corazon) Powers, Enemies, History | Marvel
    Descubre a Spider-Gwen, la heroína arácnida más cool
    Spasa Parish
    Rentals for rent in Maastricht
    159R Bus Schedule Pdf
    Sallisaw Bin Store
    Black Adam Showtimes Near Maya Cinemas Delano
    Espn Transfer Portal Basketball
    Pollen Levels Richmond
    11 Best Sites Like The Chive For Funny Pictures and Memes
    Things to do in Wichita Falls on weekends 12-15 September
    Craigslist Pets Huntsville Alabama
    Paulette Goddard | American Actress, Modern Times, Charlie Chaplin
    Red Dead Redemption 2 Legendary Fish Locations Guide (“A Fisher of Fish”)
    What's the Difference Between Halal and Haram Meat & Food?
    R/Skinwalker
    Rugged Gentleman Barber Shop Martinsburg Wv
    Jennifer Lenzini Leaving Ktiv
    Justified - Streams, Episodenguide und News zur Serie
    Epay. Medstarhealth.org
    Olde Kegg Bar & Grill Portage Menu
    Cubilabras
    Half Inning In Which The Home Team Bats Crossword
    Amazing Lash Bay Colony
    Juego Friv Poki
    Dirt Devil Ud70181 Parts Diagram
    Truist Bank Open Saturday
    Water Leaks in Your Car When It Rains? Common Causes & Fixes
    What’s Closing at Disney World? A Complete Guide
    New from Simply So Good - Cherry Apricot Slab Pie
    Fungal Symbiote Terraria
    modelo julia - PLAYBOARD
    Poker News Views Gossip
    Abby's Caribbean Cafe
    Joanna Gaines Reveals Who Bought the 'Fixer Upper' Lake House and Her Favorite Features of the Milestone Project
    Tri-State Dog Racing Results
    Navy Qrs Supervisor Answers
    Trade Chart Dave Richard
    Lincoln Financial Field Section 110
    Free Stuff Craigslist Roanoke Va
    Wi Dept Of Regulation & Licensing
    Pick N Pull Near Me [Locator Map + Guide + FAQ]
    Crystal Westbrooks Nipple
    Ice Hockey Dboard
    Über 60 Prozent Rabatt auf E-Bikes: Aldi reduziert sämtliche Pedelecs stark im Preis - nur noch für kurze Zeit
    Wie blocke ich einen Bot aus Boardman/USA - sellerforum.de
    Infinity Pool Showtimes Near Maya Cinemas Bakersfield
    Dermpathdiagnostics Com Pay Invoice
    How To Use Price Chopper Points At Quiktrip
    Maria Butina Bikini
    Busted Newspaper Zapata Tx
    Latest Posts
    Article information

    Author: Wyatt Volkman LLD

    Last Updated:

    Views: 6036

    Rating: 4.6 / 5 (46 voted)

    Reviews: 93% of readers found this page helpful

    Author information

    Name: Wyatt Volkman LLD

    Birthday: 1992-02-16

    Address: Suite 851 78549 Lubowitz Well, Wardside, TX 98080-8615

    Phone: +67618977178100

    Job: Manufacturing Director

    Hobby: Running, Mountaineering, Inline skating, Writing, Baton twirling, Computer programming, Stone skipping

    Introduction: My name is Wyatt Volkman LLD, I am a handsome, rich, comfortable, lively, zealous, graceful, gifted person who loves writing and wants to share my knowledge and understanding with you.